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Abstract

We present a streaming geometry compression codec for multires-
olution, uniformly-gridded, triangular terrain patches that supports
very fast decompression. Our method is based on linear prediction
and residual coding for lossless compression of the full-resolution
data. As simplified patches on coarser levels in the hierarchy al-
ready incur some data loss, we optionally allow further quantization
for more lossy compression. The quantization levels are adaptive on
a per-patch basis, while still permitting seamless, adaptive tessella-
tions of the terrain. Our geometry compression on such a hierarchy
achieves compression ratios of 3:1 to 12:1.

Our scheme is not only suitable for fast decompression on the
CPU, but also for parallel decoding on the GPU with peak through-
put over 2 billion triangles per second. Each terrain patch is inde-
pendently decompressed on the fly from a variable-rate bitstream by
a GPU geometry program with no branches or conditionals. Thus
we can store the geometry compressed on the GPU, reducing stor-
age and bandwidth requirements throughout the system.

In our rendering approach, only compressed bitstreams and the
decoded height values in the view-dependent “cut” are explicitly
stored on the GPU. Normal vectors are computed in a streaming
fashion, and remaining geometry and texture coordinates, as well
as mesh connectivity, are shared and re-used for all patches. We
demonstrate and evaluate our algorithms on a small prototype sys-
tem in which all compressed geometry fits in the GPU memory and
decompression occurs on the fly every rendering frame without any
cache maintenance.

1 Introduction

With the increasing availability of remote sensing technology such
as SAR and LIDAR, terrain surfaces on the Earth and neighboring
planets are being mapped at astonishing resolution, precision, and
scale. As an example, the recent Shuttle Radar Topography Mission
(SRTM) mapped about 80% of Earth’s land surface at one arcsec-
ond intervals (about 30 meters), resulting in well above one hundred
billion data samples. The visualization community has responded
well to this increase in size and availability of large data sets, and
many algorithms for interactive terrain visualization have been pro-
posed; see, e.g., the recent survey by Pajarola and Gobbetti [25].

As data sets have gotten bigger and CPUs and GPUs become
faster and more powerful, with an increasing number of cores,
there has not been a proportional increase in the performance of
disk and main memory access, causing data transfer to be the main
bottleneck in most interactive applications. As a means to com-
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bat this trend, data compression coupled with plentiful compute
power for doing decompression are being considered as a cost
effective approach to boosting effective bandwidth and memory
capacity. Consequently, many publications on terrain visualiza-
tion over the past decade incorporate some form of data compres-
sion [2, 3, 6, 9, 10, 12, 21, 29]. Until now, such methods have
largely focused on reducing disk space and I/O, with the CPU
doing the decompression of the data—often asynchronously us-
ing multithreading—and shipping the decoded data to the GPU as
needed. Although often effective, without clever prefetching tech-
niques this approach incurs substantial latency before the on-disk
compressed data arrives decoded at the GPU, and furthermore con-
sumes precious GPU VRAM, CPU-to-GPU bandwidth, and CPU
resources for decoding the data. Ideally decompression would be
delayed as long as possible, without ever storing the data decom-
pressed. With the increasing flexibility of today’s graphics cards,
we show that this is indeed possible by storing the data compressed
on the GPU and decoding selected subsets of it on-demand for each
rendered frame.

In designing a compressor for terrain data, one must consider
the implications of compression. For instance, should the com-
pression be lossless or is some data loss acceptable? The trend
has been toward the latter, mostly driven by the need for maxi-
mum compression, with the assumption that the source data was
acquired with limited accuracy and that the visualization process
has to approximate the full resolution data anyway using level of
detail techniques. With improvements in scanning technology, ac-
curacy is now approaching the precision available to store the data;
nearly without exception as 16-bit integers. Furthermore, a host of
GIS applications that combine data analysis and interactive visual-
ization demand that the full-resolution data be accessible without
loss. Examples include watershed and flood analysis, military ap-
plications like traversability and line-of-sight computation, precise
motor grading, climate simulation, and a number of applications
that represent height fields other than terrains, e.g. 3D range scans
and scalar fields in scientific computing. Remote data servers and
data dissemination also benefit from a lossless compressed format
that can be efficiently visualized.

In spite of the demand for lossless compression of digital el-
evation data, surprisingly little work has been done in this area.
For these and the reasons above, we focus in this paper primarily
on high-speed lossless compression, but allow lossy coding of the
lower resolution data in a multiresolution hierarchy without cracks.
We represent the terrain as a 4-8 hierarchy of triangular patches
consisting of hundreds of triangles each that supports fine-grained
control over the number of triangles per patch. The grouping into
patches is done for a number of reasons: to provide efficient batched
rendering of graphics primitives, to reduce the mesh adaptation
cost, to support view frustum culling, to serve as a unit of paging
between different levels of cache, and to impose some level of spa-
tial locality in the compression of the terrain data. These patches
can be explicitly managed by a cache manager, with compressed
cache levels on external storage, main memory, and the GPU. If
desired, an uncompressed cache level may also be maintained on
the GPU. In this work, we examine the case where all the com-
pressed data fits on the GPU. In every frame we decode each patch



to be rendered into a temporary buffer. The decoded height data are
combined in a second pass with reusable mesh connectivity as well
as geometry and texture coordinates computed on the fly in a vertex
program. Triangle normals are optionally computed in a geometry
program in this second pass. Hence all that is stored on the GPU is
a variable-rate bitstream of encoded height values; meta data such
as approximation errors and bounding volumes for mesh adapta-
tion are stored in main memory. This approach makes several novel
contributions to the state of the art in fast, multiresolution rendering
of compressed terrains:

• Fast, lossless terrains: We present a complete terrain codec
supporting lossless compression and very fast decompression.

• Crack-free quantization: We present an algorithm for lossy
compression of coarse-LOD patch vertices with per-patch
quantization levels and crack-free display.

• Optimized linear predictor: We develop a new, general for-
mulation of linear prediction for raster-scan vertex arrange-
ments requiring fewer mathematical operations.

• Optimized GPU parallelism: Our GPU kernel reads
variable-bitrate compressed data (most GPU kernels read only
fixed-rate data) and contains no branches or conditionals.

Our prototype system demonstrates consistently high decoding
throughputs of up to two billion triangles per second and lossless
compression rates on the order of 3:1 to 12:1 for large terrains.

2 Related Work

The terrain visualization literature is vast, and here we focus mainly
on work related to multiresolution visualization of regular grids and
on approaches to geometry compression. For a more thorough treat-
ment, we refer the interested reader to the recent survey [25].

Early work on adaptive meshing of regular grids [7, 18, 19, 24]
was motivated by the need to produce minimal triangulations as
quickly as possible on the CPU. As today’s GPUs are able to con-
sume individual triangles faster than the CPU can feed them, more
recent work has extended this idea from operating on single trian-
gles to larger patches of triangles, and differ mostly in whether each
patch is uniformly refined [3, 10, 12], adaptively refined [6, 17], or
remeshed altogether using irregular connectivity [4]. Like Hwa et
al. [12], we rely on regularly-gridded patches as that simplifies de-
coding and obviates encoding the mesh connectivity.

On the topic of terrain compression, the approaches differ gen-
erally in the intended application (interactive visualization versus
formats for data distribution), whether the scheme is lossy or loss-
less, and what is being compressed (e.g. geometry versus connec-
tivity). For non-interactive applications, decoding speed is of sec-
ondary concern, thus standard image compression techniques based
on wavelet transforms coupled with statistical coding schemes that
maximize compression, possibly at the expense of decoding speed,
tend to be popular [14, 26]. This approach can also be effective in
tile-based interactive methods, where each tile is decompressed on
the CPU as it is paged in from disk [2, 3, 10, 15, 21]. In the context
of multiresolution rendering, these lossy compression techniques
complicate joining the boundaries of different resolution tiles seam-
lessly. Thus a second crack filling pass may be needed to ensure at
least a C0 continuous surface [6, 21].

Since terrains are predominantly regularly sampled, a large por-
tion of the geometric information need not be stored explicitly but
can be derived on the GPU. For example, mesh connectivity and xy
(geometry) and uv (texture) coordinates can often be computed on
the fly [23, 29], and some methods have explored multiresolution
adaptive resampling by essentially treating the height field as a tex-
ture [1, 5, 20]. We also take advantage of such implicit information
to further reduce memory and bandwidth requirements.
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Fig. 1: Adaptive bintree hierarchy of triangle patches. The indexing
scheme allows constant time computation of indices for children, parents,
siblings, and cousins that form a “diamond,” e.g. 13 and 14.
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Fig. 2: Ways of refining and traversing triangle patches with (a–b) 4–8 and
(c–d) regular connectivity.

A few recent methods have explored decoding compressed ter-
rain data on the GPU. Dick et al. [6] presimplify the terrain via
adaptive 4-8 meshing using a progression of object space error tol-
erances, and then quantize the resulting integer z elevations to 12
bits of precision that, together with 10-bit xy coordinates, are stored
as fixed-length codes. The adaptive coarsening results in a mesh
with irregular connectivity that in a scheme similar to [9] is then
encoded for efficient decompression on the GPU. A number of re-
cent papers address GPU decoding of other types of geometric data,
e.g. using (lossy) vector quantization [16, 28] and adaptive [11]
and uniform [27] scalar quantization. For lossy compression, one
may also consider existing hardware-supported compressed fixed-
rate formats for texture maps, e.g. S3TC (aka. DXT), and normal
maps, e.g. 3Dc. It is however not immediately clear how these tech-
niques could be retrofitted for efficient, lossless coding.

Though not lossless, the methods in [6, 10, 26], for example,
go part of the distance by enforcing bounds on the maximum error
introduced. Below we describe a very fast, variable-rate lossless
scheme that can exploit lossy compression as part of the multireso-
lution coarsening process. To our knowledge, this is the first loss-
less terrain compression scheme that is also amenable to an efficient
GPU implementation.

3 Terrain Representation

Before describing our compression scheme we provide a brief
overview of the multiresolution representation we use for the ter-
rain. We assume that the input terrain is a uniformly gridded height
field with 16-bit unsigned integer elevations that are transformed
to world coordinates by a uniform scale factor ∆z. The horizon-
tal post spacing is given by ∆x and ∆y. Like most methods for
regularly gridded terrain [7, 18, 19, 24], we rely on a bintree hier-
archy formed by 4-8 subdivision (aka. longest edge bisection), but
with each bintree node representing a whole patch of triangles, sim-
ilar e.g. to [4, 12, 17]. Such a hierarchy can be adaptively refined
to produce a conforming mesh free of cracks (Fig. 1). Note that
the interior of each patch can be arbitrarily tessellated as long as all
three patch sides are divided into the same, fixed number of triangle
edges. In our case, we restrict ourselves to patches whose interiors
are regularly gridded. Unlike [12, 17], who use the same 4-8 refine-
ment within each patch, we use a regular grid connectivity with n
“rows” of triangles (Fig. 2), lifting the restriction that n be a power
of two for more fine-grained selection of the patch size. Each patch
thus has V = (n + 1)(n + 2)/2 vertices and T = n2 triangles,
and the terrain dimensions are therefore limited to (2mn + 1)2 for
some non-negative integer m.



For adaptive refinement and crack avoidance, we base our
scheme on Lindstrom and Pascucci’s SOAR algorithm [19], which
stores with each diamond—two cousin patches that share a
hypotenuse—an object-space error term and a bounding sphere that
determine when the diamond needs to be refined to meet a screen-
space error tolerance. To ensure a crack-free mesh the errors and
bounding spheres are inflated where necessary, such that each par-
ent’s error/sphere is at least as large as its children’s. Furthermore,
cousins must agree on a single error and sphere in order to refine
together, and thus the nesting relationship is enforced for cousins
also (see [19] for details). This information is precomputed once for
each patch during encoding and is cached in main memory at run
time. We additionally store in memory with each patch the xy coor-
dinates of its first triangle, an offset into the compressed bitstream,
and a single quantization parameter, as described in Section 5, for
a total of 40 bytes of meta data per patch.

We use a simple binary tree indexing scheme to identify and or-
ganize the patches in a breadth-first manner, from coarse to fine res-
olution. This scheme allows cousin patches to be identified quickly
in the offline construction. To generate a view-dependent mesh we
make a recursive traversal over the patch hierarchy by indexing into
a fixed-size 1D array of patches and accumulate patch IDs for later
decompression and rendering. This makes for a particularly simple
and efficient implementation.

4 Lossless Compression

We now turn our attention to losslessly compressing the height field
over a patch. We assume that height values are uniformly quantized
to sixteen bits, and that this is sufficient precision to represent any
terrain.1 As is common in lossless image and mesh coding, we
use a linear predictor to estimate each height sample from a small
number of already coded samples, and encode the difference with
respect to the actual value. In particular, we use parallelogram pre-
diction [13, 30] for the z (height) component; the xy coordinates
lie on a regular grid and are thus known. By carefully choosing the
traversal of the vertices in a patch, it is possible to use 2D paral-
lelogram prediction only (as opposed to less accurate 1D or con-
stant predictions), and to maximize the number of configurations
in which the parallelogram is square (i.e. the triangles form a “di-
amond”), as that ensures that the vertices involved in the predictor
are as close as possible in the domain. Fig. 3 and Fig. 5 illustrate
this traversal of the patch, in which diagonal rows of vertices are
encoded at a time. The scheme is bootstrapped by storing the three
vertices of the first triangle uncompressed.

For the diamond predictor (Fig. 3(c–d)), a sample zi,j on (as-
cending) vertex row i and (descending) column j is predicted as

pi,j = zi−1,j + zi,j+1 − zi−1,j+1 (1)

and a residual ri,j = zi,j − pi,j is computed and encoded. This
implies that we have to maintain one row of vertices zi−1 in a buffer
from which the next row zi is predicted. Notice that the additive
term zi−1,j+1 in the previous prediction of zi,j+1 is subsequently
subtracted off in the expression for pi,j . We can thus rewrite zi,j =
pi,j + ri,j by expanding the recurrence

zi,j = zi−1,j + zi,j+1 − zi−1,j+1 + ri,j

= zi−1,j + zi,j+2 − zi−1,j+2 + ri,j + ri,j+1

= zi−1,j + zi,i−1 − zi−1,i−1 +

i−2X
k=j

ri,k

= zi−1,j + si,j

(2)

1For higher precision terrains, one could store a per-patch offset into a
wider range, as the small full-resolution patches have limited range.

i j

(a) (b) (c) (d)

Fig. 3: Linear predictions of one row of vertices (solid) from already de-
coded vertices (hollow). (a–b) The first two vertices in a row are decoded
using parallelogram prediction. (c–d) All subsequent vertices in a row are
predicted in a diamond configuration.

Thus, we save one out of every three arithmetic operations by using
a residual accumulator s initialized on each row i with zi,i−1 −
zi−1,i−1. Since zi−1,j is no longer needed after it is used to predict
zi,j , we may drop the row subscript i and overwrite zi−1,j with the
next vertex zi,j in the same column j:

s← s + ri,j

zj ← zj + s
(3)

This front-advancing streaming decoder is very efficient and re-
quires buffering only one row of vertices within each patch.

4.1 Residual Coding

As is well-known in the compression literature, the distribution of
residuals is often highly peaked around zero, which can be ex-
ploited, for example, by entropy coding techniques. Entropy cod-
ing is, however, less effective for data whose precision is high with
respect to the number of values coded, in part due to difficulties
in probability modeling. Furthermore, even Huffman coding re-
quires a nontrivial amount of code to be executed, and may not be
well suited for a GPU implementation. Instead, static non-statistical
codes that allocate fewer bits to smaller residuals, such as the Elias
omega code [8], are a possible alternative. Such variable-length
codes must encapsulate both the value bits and the bit length of
each residual, which often incurs a substantial overhead relative to
the value bits only (e.g. the omega code requires up to 7 length bits
for 16 value bits).

Recently Moffat and Anh [22] proposed the RBUC code that
exploits coherence by amortizing the length bits over several con-
secutive residuals. As is done in Elias omega coding, this proce-
dure is applied recursively, implicitly generating a tree represen-
tation of the residual stream, so that each level stores the num-
ber of bits needed to encode values on the next lower level. The
value of each interior node in the tree is thus the maximum w =
maxidlog2(xi + 1)e taken over its child nodes with unsigned val-
ues xi. Since the bottom-level residuals are signed, it is cus-
tomary to first map them to unsigned ordinals,2 e.g. in the order
0,−1, +1,−2, +2, . . . RBUC trees are in practice quite shallow:
four levels, including the residuals stored in the leaf nodes, suffice
to represent residuals as wide as 127 bits, with the root node repre-
sented as two bits.

Moffat and Anh’s method groups residuals by exhaustively com-
puting the best of several different per-level branching factors in the
tree. Our compression scheme is based on RBUC, but uses static
branching so that each tree exactly spans the fixed number of resid-
uals V − 3 in a patch. To assign branching factors, one could con-
sider combinations of the prime factors of V−3. However, for some
patch sizes the factors are few and large and lead to poor branching.
Instead, we found that a lowest-level branching factor of 4–5 ver-
tices empirically works well for most terrains, with a second-level
branching of around 16 nodes. To improve spatial locality, our trees
are also constructed so as to avoid grouping residuals from the end
of one patch row with those from the beginning of the next. Thus,
each row is partitioned into groups of 3–5 vertices, with second-
level groups spanning a whole number of rows.

2This mapping is used only for computing w in the RBUC tree.



The RBUC nodes are coded in a pre-order traversal of the tree.
One key advantage of this is that decompression can be done very
efficiently by replacing the pre-order recursion with three nested
loops—one for each level of branches in the tree—and by main-
taining the “current” bit length on each level. In a GPU imple-
mentation, these loops can be unrolled, leading to conditional-free
code. Because of this unrolling, it matters little to the decoder that
the branching factors vary within each level. Thus, the decoder
determines the number of bits to read for the next few nodes, and
fetches variable-length residuals from a bit stream. Since residuals
are signed, we store them biased by 2w−1, where w is the current
residual bit length, to move them into the unsigned range [0, 2w−1].

In our experience the RBUC scheme yields excellent compres-
sion with only minor overhead for representing the bit lengths; usu-
ally on the order of 2–3 bits overhead per vertex. In fact, at only
2–4% less compression, RBUC is quite competitive with static (but
data-dependent) Huffman codes, in part due to the coherence in
residuals resulting from our localized traversal of the vertices. In
relation to the Elias gamma code, as used e.g. in [10], RBUC im-
proves compression by 25–60%. RBUC is attractive also in the
sense that most read calls return directly usable value bits without
the need for table lookups, dependent read calls, or bit by bit pars-
ing of the compressed stream.

5 Lossy Compression

In order to support multiresolution queries, e.g. for view-dependent
level of detail, we construct a whole bintree hierarchy of patches,
which essentially doubles the patch count. Worse yet, as the resolu-
tion decreases, linear prediction performs increasingly worse, such
that the majority of the compressed data resides on the upper levels
of the hierarchy. One may justifiably question the need to loss-
lessly preserve the coarsened data as the coarsening (subsampling)
already incurs data loss. In practice, lossless compression is driven
by the need to exactly reconstruct the full resolution data only, and
hence it is reasonable to consider lossy compression of coarsened
patches.

A simple way of controlling data loss is to simply quantize height
values in the upper hierarchy. The approach we take is to first eval-
uate for each patch the error εc due to coarsening, and to then allow
a proportional quantization error εq = qεc, where q is some fixed
constant usually less than one. Since the coarsening and quanti-
zation errors may compound, a single unified error must then be
recomputed and nested for each patch. That is, we do not use εc as
a hard tolerance that must be met in the quantization process.

Quantization has to be done with care to ensure a crack-free ter-
rain. For example, patch boundaries cannot be quantized arbitrar-
ily. Furthermore, quantizing residuals only, as is done for example
in wavelet image coding, is generally not possible, as that would
not allow adjacent patches to agree on the reconstructed height val-
ues on shared boundaries. Instead, we must quantize the original
height values and allow different amounts of quantization of inte-
rior and boundary vertices. Furthermore, for an efficient imple-
mentation, we restrict the quantization levels to be power of two
multiples of the vertical resolution ∆z, such that quantization can
be implemented using simple bit shifts. The shift is given by

k =

(
blog2

εq

∆z
c+ 1 if εq ≥ ∆z

0 otherwise
(4)

In selecting the quantization shifts, we first note that all vertices on
the finest level must be assigned a zero shift for lossless coding.
On the remaining levels, we first classify vertices as boundary and
interior (I) vertices. The boundary vertices are further divided into
corners (C) and vertices on patch leg (L) and patch hypotenuse (H)

(a) (b) (c)

Fig. 4: (a) Classification of patch vertices as corners (green), edges (yel-
low), and interior/remaining (light blue). A patch leg can be adjacent only
to (b) another patch leg at the same resolution or to (c) a hypotenuse of a
finer resolution patch. The latter dictates the precision to use for vertices
on a shared edge. All corners are stored at full precision.

edges. Corner vertices may be surrounded by patches at several
different resolutions, and hence we simply leave them unquantized.
An L vertex in a given patch may also be an L vertex in an adjacent
patch on the same level, or it may be an H vertex in a patch one level
below. Thus each side of a patch is shared by four patches—two
children and their two parents—that must agree on the quantization
to use for that side. Since nesting ensures that the children’s coars-
ening errors are no larger than their parents’, the precision needed
for a vertex is dictated by the finer resolution children. As a result,
the shifts for L vertices are governed by other patches, leaving only
the shifts for H and I vertices to be determined.

Here there is no reason to distinguish between H and I vertices,
as only the two cousin patches that form a diamond must agree on
the quantization to use for H vertices. But these two patches have
the same coarsening error, and hence the same shift may be used
for the union of their H and I vertices. The resulting classification
of vertices and patch neighbor configurations are shown in Fig. 4.
Using this classification, three shift values per patch are needed by
the decoder: two for the legs and one for the remaining H and I
vertices. Only the H/I shift is stored with a patch; the two L shifts
are the H/I shifts of its children.

Note that quantization has an influence on prediction. In partic-
ular, all vertices involved in a prediction must be reduced to the
precision of the vertex being predicted to avoid introducing un-
wanted low-order bits on patch boundaries. We thus shift out such
low-order bits where necessary, perform the prediction at a unified
precision, add in the low-precision residual, and then left shift the
result as needed. In practice, this step is necessary only for the C
and L vertices in the first triangle of a patch due to the regular con-
nectivity of patches and our traversal order from diamond interior
to boundaries, i.e. from low to high precision vertices.

6 GPU Decompression

The encoder described above lends itself to a straightforward de-
coder implementation on the CPU that takes a variable-length bit-
stream for a patch as input and outputs a sequence of integer height
values, which can be rendered using indexed triangle lists. We now
describe how to perform the same task efficiently on the GPU.

Current-generation graphics cards support not only pro-
grammable shaders for vertices and fragments, but can even gen-
erate novel connectivity and geometry in so-called geometry pro-
grams. Following the execution of the vertex program on its ver-
tices, each rendering primitive becomes a thread of execution that
can emit a long list of points, triangles, or triangles strips that get
sent directly to the rasterization stage. In fact, using parallelogram
prediction one could easily generate both xy and z coordinates us-
ing vector instead of scalar arithmetic in the predictor (with no
residual term for xy), and output one triangle strip per row in the
order shown in Fig. 2(d). Texture coordinates could similarly be
generated, and normals computed on the fly. All these coordinates
could conceptually be streamed directly from registers to the raster-
izer without ever being written to memory.
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Fig. 5: Numbering of vertices on the advancing front just after row i = 3
has been decoded. Vertex 4 is needed to predict row i = 4.

for (int i = 2; i <= n; i++) { // for each row...
short s = z[i-2] - z[i] + residual(); // initialize accumulator
z[i+1] = z[i-1]; // keep first in previous row
z[i-1] += s; // second vertex in this row
z[i] = z[i-1] + z[i+1] - z[i-2] + residual(); // first vertex in this row
emit(z[i]); // output first vertex
emit(z[i-1]); // output second vertex
for (int j = i - 2; j >= 0; j--) { // for each column...
s += residual(); // update accumulator
z[j] += s; // update vertex
emit(z[j]); // output vertex

}
}

Listing 1: Decoder pseudocode. The loops are in actuality unrolled and the
residual() call, which may involve multiple reads, is inlined.

uint read(inout STREAM s, uint n) { // read n bits from bitstream s
s.bits -= n; // subtract number of bits buffered
uint m = s.bits & 16; // number of bits to fetch (0 or 16)
s.bits += m; // add number of bits fetched
s.word <<= m; // make room for more bits
m >>= 4; // number of words to advance
s.word += texBUF(s.tex, s.ptr).x & -m; // fetch bits and insert or discard
s.ptr.x += m; // advance pointer
uint value = s.word >> s.bits; // extract value bits
s.word -= value << s.bits; // remove from register
return value; // return n bits

}

Listing 2: Variable-length reads from bitstream.

Unfortunately the semantics of OpenGL and hardware limita-
tions place restrictions on the amount of data that a geometry pro-
gram can output: 1,024 scalar attributes on the NVIDIA GeForce
GTX 280 GPU. Emitting all the necessary attributes for rendering
a complete patch would severely limit the patch size and therefore
compression, due to the need to replicate vertices on patch bound-
aries. However, the geometry shader is still the most promising
stage in the graphics pipeline for decoding patches. The 4,096 bytes
of output available to a geometry program is significantly more than
the 128 bytes available to a fragment program.

Fortunately an option exists to bypass the rasterizer by writing
the output to a buffer for later access during a second rendering
pass. We employ this approach of emitting and temporarily buffer-
ing only height values, as it also better exploits parallelism and im-
proves decoding throughput. If output size was the only constraint,
we could emit patches with as many as 62 rows (our unrolled pro-
gram instruction count currently limits us to 35 rows). Note that
only a buffer large enough to hold the actual z values of the dis-
played geometry (after view frustum culling) is needed, or on the
order of a few megabytes. Although the result could be cached and
reused across frames, the penalty for not doing so is quite small,
and the lack of caching simplifies the implementation.

Our GPU decoder is implemented in the Cg high-level language
and compiled to OpenGL shader assembly code (we find that exam-
ining the assembly code helps guide our optimization). The decoder
takes as input a pointer to a texture buffer (essentially a contiguous
chunk of GPU memory), an offset into the buffer to the beginning of
the patch’s compressed bitstream, and three quantization shifts (see
Section 5). The first three height values are read verbatim from the
bitstream and are output. We then proceed to decode vertices one
row at a time. As in the case of encoding, only one row of height
values is needed to generate the next row, and can be stored in reg-
isters. For each vertex, we make a prediction, read the next residual

from the bitstream and left shift it according to the vertex’s quanti-
zation level, and finally emit the reconstructed height value. These
steps are summarized by the pseudocode in Listing 1, which shows
the two nested loops over the vertices that we manually unroll using
a procedural code generator to avoid conditionals and maximize the
opportunity for SIMD parallel execution.

The most challenging aspect of the decoder implementation is
making the variable-length reads from the bitstream efficient, which
is of particular importance since the RBUC scheme requires more
reads than there are vertices in a patch. We implement this in a
conditional free manner by making redundant fetches from a texture
buffer via a pointer that is advanced only when necessary. Bits
from the bitstream enter a 32-bit register from the right 16 bits at
a time (or are discarded if already fetched), and at most 16 bits
are read from the left of this register at a time. Underflow on the
number of buffered bits in the register signal that another 16 bits
are needed, and causes the pointer to be advanced. The resulting
Cg code (Listing 2) compiles to 11 assembly instructions per read.
In all, we require on average 22.2 instructions per vertex without
and 23.5 instructions with quantization. As already mentioned, the
entire decoder is thus free of conditionals and loops, and executes a
fixed number of instructions for each patch.

7 Rendering

We have integrated the geometry decoder into a three-stage adapt–
decode–draw terrain rendering prototype system. In this prototype,
the compressed bitstreams associated with all patches are stored on
the GPU, along with almost all the data necessary to decode and
draw the patches. Every frame, the cut is adapted to the current
error threshold and viewing parameters, the bitstreams of all nodes
on the cut are decoded in parallel into a small buffer on the GPU,
and the resulting decompressed heights are used to draw the patches
as triangles. We do not maintain a cache of decoded geometry in
our prototype, although that would clearly be feasible and useful
for some rendering systems.

The adapt phase uses a screen-space error tolerance (in pixels)
and a set of viewing parameters to produce a cut of nodes that are
just beneath the error tolerance and not culled by the viewing frus-
tum. A top-down traversal of the bintree patch hierarchy is per-
formed on the CPU to produce this cut, which is organized into
bins to minimize graphics state changes in the draw phase.

In the decode phase, the system issues a sequence of patch de-
code commands in the form of OpenGL point primitives. Each
point primitive has the offset of a patch into a texture buffer con-
taining the bitstream, as well as the three required shift parameters
for maintaining proper quantization, packed as raw bits into two
floating point variables. Each point primitive is passed through a
trivial vertex program, which just unpacks the four values before
handing them to the main decoder running as a geometry program.
A transform feedback buffer captures the geometry program outputs
for use in the draw phase. The rasterizer is set to discard fragments
in this phase, so no fragment program is bound or executed.

Finally, the draw phase renders the decoded patches as indexed
OpenGL triangle set primitives. A single set of vertex indices stored
on the GPU is reused for every patch to issue the proper vertices
for rendering. A vertex program binds a height value from the de-
coded height buffer with canonical xy-coordinates from a properly-
oriented patch, applying patch translation, LOD scaling, and the
modelview-projection matrix to produce xyzw -coordinates in clip
space, xyz -coordinates in object space for normal computation and
1D texture mapping, and uv -coordinates for 2D texture mapping.

If a flat shading rendering mode is enabled, a flat shading pro-
gram is applied in the geometry shader during the draw phase. This
program can access all three triangle vertices to produce a face nor-
mal, which we use in our prototype to perform a simple dot product



Fig. 6: Shaded relief maps of the data sets we use. From left to right: Hawaii, Puget Sound, Pacific NW, and CalNev.

Data set Dimensions ∆x = ∆y ∆z Range # Rows # Patches Size (MB) : Compression Ratio
Original q = 0% q = 25% q = 50%

Hawaii 16, 3852 10 m 1.0 ft 13,781 16 4 M 512 115 : 10.7 107 : 11.4 103 : 11.9
Puget Sound 16, 3852 10 m 0.1 m 43,930 16 4 M 512 379 : 3.2 302 : 4.1 289 : 4.2
Pacific NW 24, 5772 1′′ ' 30 m 1.0 m 4,384 24 4 M 1,152 555 : 4.7 477 : 5.4 440 : 5.9
CalNev 32, 7692 1′′ ' 30 m 1.0 m 4,412 16 16 M 2,048 1,004 : 4.8 896 : 5.5 832 : 5.9

Table 1: Compression results for four large terrains. The two largest terrains are represented in geographic coordinates at one arcsecond (1′′) resolution.
Range refers to the maximum integer elevation value (zero being the minimum in all cases), and is thus an indicator of the intrinsic precision of the data. The
compression ratio relates the size of the full hierarchy with and without (16 bits/vertex) compression and quantization q (mb/mv in the terminology of Fig. 7).

for diffuse illumination. Otherwise, no geometry program is bound,
and the vertex program results go directly to the rasterizer. In either
case, one of a number of fragment programs is bound to produce ef-
fects such as flat shading with a 1D color ramp (indexed by height
value), 2D texturing, contour line extraction, etc.

It is worth making a few key observations here about optimizing
these phases. Although the adapt phase is quite simple and efficient
at run-time, a full-scale system would pipeline this phase on the
CPU with the decode and draw phases of the previous frame. Also,
for small patch sizes, it may be useful to adapt at a coarser granu-
larity than the decoding and drawing to avoid a CPU bottleneck.

The decoding program is highly optimized, but its overall per-
formance also depends on a number of factors besides instruction
count. As we show in Section 8, the number of output bytes per de-
code thread has a big impact on performance due to limited shared
memory for the on-chip output buffer (before writing to the off-
chip transform feedback buffer). The NVIDIA GT200 series card
we are using increased the size of the output storage by a factor of
six over the GeForce 9 series to reduce this bottleneck. Because
the emit commands issue four-byte attributes, we pack two height
values into each emitto fully utilize this precious space. Also, the
use of point primitives to issue patches (as opposed to, say, triangle
primitives) keeps the number of vertex program threads in the de-
code phase to a minimum, allowing more GPU multi-processors to
be tasked as geometry program threads for the actual decoding.

To optimize the draw phase, the cut is organized by bitstream
buffer number (the largest terrains require splitting the stream into
a few texture buffers), orientation (patches have one of 16 canonical
orientations), and hierarchy level. Only a height buffer offset and
translation are set before issuing each patch. Also, we found issuing
a single glDrawElements call per patch using triangle sets to be
significantly faster than using glMultiDrawElements contain-
ing multiple small triangle strips per patch.

8 Results

We evaluate our compression and decoding methods on a PC
running Fedora Core 10 with 3 GHz Dual Xeon CPUs and an
NVIDIA GTX 280 GPU with 1 GB of VRAM. In our study we
use four data sets (see Fig. 6 and Table 1): a slightly cropped

and padded (to make it square) version of Hawaii’s Big Island
available at http://duff.geology.washington.edu/data/raster/
tenmeter/hawaii/; the Puget Sound benchmark data set from
Georgia Tech; an area of the Pacific Northwest covering roughly
41–48N latitude, 118–125W longitude; and the California and
Nevada states, covering the nearly 10 × 10 degree area 32.5–
42N, 114–124W. The latter two SRTM data sets are available at
http://www2.jpl.nasa.gov/srtm/. We performed simple hole fill-
ing to patch up small voids in these two data sets.

8.1 Compression

We first investigate how well these data sets compress using our
method. As patches overlap on their boundaries and because each
patch incurs some fixed overhead, there’s a compression penalty as-
sociated with choosing patches to be too small. On the other hand,
choosing very large patches may ultimately lead to poor spatial lo-
cality in the row-by-row traversals we make. Furthermore, as we
shall see, large patches decompress slower. Fig. 7 highlights the
trade-off between patch size and compression rate for Hawaii and
Puget Sound. We plot the storage cost for the whole hierarchy (mb)
as well as just the bottom-most, full-resolution level (sb) averaged
over all vertices in the hierarchy (mv) and just the vertices in the
original, single-resolution data set (sv). In our prototype any patch
size that is not a power of two requires cropping the terrain (to as
little as 28% of the total area for 17 rows), which is the cause for
the kinks in the curves. From the top two curves it is clear that the
upper levels, which represent wider spacing between samples, com-
press worse than the bottom level as the per vertex cost everywhere
more than doubles between these curves. This further motivates the
need for quantization on those upper levels.

Because the hierarchy we build in fact adds functionality in
terms of multiresolution queries without requiring access to the en-
tire full-resolution data, we believe it is appropriate to also com-
pare the per-vertex storage cost in the hierarchy with and without
compression. The green curves show that a patch size of 16 and
above provides a fair trade-off in compression, and the per-vertex
cost for Hawaii approaches 1.2 bits/vertex. Admittedly this data
set contains a large amount of water at zero elevation, which im-
proves compression. In practice, however, it is common for high-

http://duff.geology.washington.edu/data/raster/tenmeter/hawaii/
http://duff.geology.washington.edu/data/raster/tenmeter/hawaii/
http://www2.jpl.nasa.gov/srtm/
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resolution data sets to contain large irregularly shaped voids in re-
gions where no data was acquired (either for legal or practical rea-
sons), and without compression such regions would have to be rep-
resented with as many bits as the actual data. In actual use cases
over land we have seen as much as 30:1 lossless compression of
regular grids with partially missing data.

As expected, Puget Sound does not compress as well, but we
achieve a respectable 4.95 bits/vertex (mb/mv) at 16 rows and
5.14 bits/vertex when considering only the full resolution (sb/sv).
This compares favorably with the lossless PNG image format (5.87
sb/sv), which relies on zlib as a much more complex back end
coder. At 32 rows our method is about one bit per vertex less effi-
cient than lossless JPEG2000, though in fairness the complexity of
the JPEG2000 format makes it quite ill suited for fast decoding.

Fig. 8 illustrates the benefit of quantizing upper levels. As quan-
tization often increases the measured error over a patch, we would
expect a net increase in patches (and thus rendered triangles) when
refining the mesh to a given error tolerance as compared to using
no quantization. For these curves we refined the mesh to a given
object-space error tolerance and counted the corresponding number
of patches. It is evident from this graph that at low quantization
levels, e.g. q = 25%, the increase in patches is only a few percent.
The improvement in compression is, however, quite significant; a
reduction from 4.70 to 3.45 bits/vertex. Finally, we note that al-
though the vertices on upper levels are simply subsampled from
finer resolutions, the use of quantization could also be coupled with
higher-quality low-pass filtering with only minor code changes.

A comparison with other terrain compressors is not straightfor-
ward, as few support lossless compression, whereas in the lossy
case it is not obvious how to evaluate rate distortion over multires-
olution hierarchies. We suspect that methods designed solely for
lossy coding are, however, likely to improve on our results.

8.2 Decoding and Rendering

We now consider the performance of the GPU-based decoder taken
alone and in the context of interactive rendering. Fig. 9 shows how
the decode throughput varies with the number of decoded triangles.
Two aspects of the performance characteristics of the decoder are
quite clear from the graph. First, throughput increases with input
size. This is not surprising, because the available parallelism (num-
ber of parallel execution threads) increases with the problem size,
and some overhead may be increasingly amortized as well. Second,
we see three widely-spaced performance tiers for different numbers
of rows-per-patch. These performance tiers are determined by the
number of bytes produced per patch (and thus per thread). In gen-
eral, within a tier, performance increases with the number of rows.
Some sub-tiers are visible as well, due to other discrete constraints
on allocation of GPU resources. Note that the curves increase in
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length with increasing patch size due to the patch-level granularity
of our measurements, but this fortuitously makes the graph some-
what easier to interpret.

We also collected performance data of the overall rendering sys-
tem prototype by flying over each terrain in a circular path with a
number of different error thresholds and rendering settings. Fig. 10
plots the performance for the CalNev and Puget Sound data sets,
each with a screen-space error threshold of half a pixel. For each
frame, the filled area plots the number of triangles on the cut (note
that this is an error-threshold system, so we are not currently tar-
geting a particular triangle count or frame rate). The green curve
shows the decoder throughput. Notice that at between 13 and 15
million triangles on the cut, we achieve over 1.9 billion triangles
per second, or roughly 95% of our peak throughput. The decod-
ing throughput is more sensitive to variation in triangle count than
the draw throughput because parallelization occurs at a per-patch
rather than per-triangle granularity. The purple curve plots the
adapt throughput, which is reasonably high and constant at this
error threshold. The dark blue curve plots the drawing through-
put for 2D texture mapped rendering with no normal computation
or real-time illumination, and the light blue curve shows the total
system throughput (all three stages) when rendering in this mode.
Similarly, the dark red and pink curves show the drawing and total
throughput when rendering with normal computation and diffuse
shading with a 1D color ramp lookup. The reduction in through-
put in this mode is due to binding the geometry shader for nor-
mal computation. Interestingly, the performance decrease is the
same even if we do no actual computation in that geometry shader;
it is due solely to retasking multi-processors to geometry shading
as opposed to vertex and fragment shading. Overall, we see that
decoding throughput ranges roughly from 3–4 times the drawing
throughput (in 2D texturing mode).
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Fig. 10: View-dependent triangle count and throughput for the various stages of our pipeline over 720-frame fly-throughs of the 327692 CalNev (left) and
163852 Puget Sound (right) data set. The error tolerance was 0.5 pixels. We show in blue the throughput for drawing 2D textured terrain without lighting, and
in red lit terrain with on-the-fly normal computation and 1D texturing. The decode and adapt throughputs are insensitive to rendering mode. The occasional
downward spikes are due to timer inaccuracies caused by involuntary context switching.

9 Conclusion

We have presented a fast, lossless compression codec for terrains on
the GPU, and demonstrated its use for interactive visualization. We
build a hierarchical representation that combines streaming, loss-
less compression at the finest resolution with seamless, lossy quan-
tization at coarser mesh resolutions. Our compression algorithm
achieves compression rates of 3:1 to 12:1 over such a hierarchy
without compression. As larger and larger data sets become avail-
able, such compressed representations become increasingly useful,
providing greater flexibility in when and where data decompression
takes place in a processing pipeline. In our prototype system, de-
coding rates are at least 3–4 times the drawing rates, with a peak
decoding throughput over 2 billion triangles per second, making it
quite acceptable to decode all rendered triangles every frame.

There are several avenues for future work in this area. Building
directly on this codec, we envision encorporating this work into a
larger-scale rendering system, with data caches on the CPU and
GPU managing memory locality of massive, out-of-core data. As
future algorithmic research, it will also be interesting to expand our
method to handle more general mesh topologies and multi-channel
geometry images, all with decompression happening on the GPU.
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